Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis

نویسندگان

  • Yu Fujita
  • Jun Araya
  • Saburo Ito
  • Kenji Kobayashi
  • Nobuyoshi Kosaka
  • Yusuke Yoshioka
  • Tsukasa Kadota
  • Hiromichi Hara
  • Kazuyoshi Kuwano
  • Takahiro Ochiya
چکیده

Extracellular vesicles (EVs), such as exosomes and microvesicles, encapsulate proteins and microRNAs (miRNAs) as new modulators of both intercellular crosstalk and disease pathogenesis. The composition of EVs is modified by various triggers to maintain physiological homeostasis. In response to cigarette smoke exposure, the lungs develop emphysema, myofibroblast accumulation and airway remodelling, which contribute to chronic obstructive pulmonary disease (COPD). However, the lung disease pathogenesis through modified EVs in stress physiology is not understood. Here, we investigated an EV-mediated intercellular communication mechanism between primary human bronchial epithelial cells (HBECs) and lung fibroblasts (LFs) and discovered that cigarette smoke extract (CSE)-induced HBEC-derived EVs promote myofibroblast differentiation in LFs. Thorough evaluations of the modified EVs and COPD lung samples showed that cigarette smoke induced relative upregulation of cellular and EV miR-210 expression of bronchial epithelial cells. Using co-culture assays, we showed that HBEC-derived EV miR-210 promotes myofibroblast differentiation in LFs. Surprisingly, we found that miR-210 directly regulates autophagy processes via targeting ATG7, and expression levels of miR-210 are inversely correlated with ATG7 expression in LFs. Importantly, autophagy induction was significantly decreased in LFs from COPD patients, and silencing ATG7 in LFs led to myofibroblast differentiation. These findings demonstrate that CSE triggers the modification of EV components and identify bronchial epithelial cell-derived miR-210 as a paracrine autophagy mediator of myofibroblast differentiation that has potential as a therapeutic target for COPD. Our findings show that stressor exposure changes EV compositions as emerging factors, potentially controlling pathological disorders such as airway remodelling in COPD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular vesicles in smoking-related lung diseases.

Cigarette smoking continues to be a major health hazard, and is involved in the mechanisms of developing various types of smoking-related diseases. Chronic obstructive pulmonary disease (COPD) is a representative disease mainly caused by cigarette smoke inhalation and is pathologically characterized by emphysema and fibrotic airway remodeling. In addition, the presence of COPD is associated wit...

متن کامل

Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis.

Fibroblastic foci, known to be the leading edge of fibrosis development in idiopathic pulmonary fibrosis (IPF), are composed of fibrogenic myofibroblasts. Autophagy has been implicated in the regulation of myofibroblast differentiation. Insufficient mitophagy, the mitochondria-selective autophagy, results in increased reactive oxygen species, which may modulate cell signaling pathways for myofi...

متن کامل

Extracellular Vesicles Derived from Gastrointestinal Microbiota: A New Approach to Clinical Studies

Extracellular vesicles, naturally released from all cell types including bacteria, are of great importance in medical microbiology due to transporting a variety of biomaterials, enzymes, and virulence factors, regulating immunity, and having roles in colonization and initiation of signaling pathways. These vesicles are also secreted from microbiota in the gastrointestinal tract and affect the h...

متن کامل

Insufficient autophagy in idiopathic pulmonary fibrosis.

Autophagy, a process that helps maintain homeostatic balance between the synthesis, degradation, and recycling of organelles and proteins to meet metabolic demands, plays an important regulatory role in cellular senescence and differentiation. Here we examine the regulatory role of autophagy in idiopathic pulmonary fibrosis (IPF) pathogenesis. We test the hypothesis that epithelial cell senesce...

متن کامل

Myofibroblast Expression in Skin Wounds Is Enhanced by Collagen III Suppression

Generally speaking, the excessive expression of myofibroblasts is associated with excessive collagen production. One exception is seen in patients and animal models of Ehlers-Danlos syndrome type IV in which the COL3A1 gene mutation results in reduced collagen III but with concurrent increased myofibroblast expression. This paradox has not been examined with the use of external drugs/modalities...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015